
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

59, 1, pp. 109-120, Warsaw 2021
DOI: 10.15632/jtam-pl/129071

THE USE OF THE LINEAR FORM OF DYNAMICAL EQUATIONS OF

THE SATELLITE ATTITUDE CONTROL SYSTEM FOR ITS ANALYSIS

AND SYNTHESIS

Meirbek Moldabekov, Anna Sukhenko, Darya Shapovalova

AALR “Institute of Space Technique and Technology”, Almaty, Kazakhstan

e-mail: sukhenko.a@istt.kz

Suleimen Yelubayev

Al-Farabi Kazakh National University, Almaty, Kazakhstan

e-mail: yelubayev.s@istt.kz

At present, the methods based on using linearized dynamical equations are applied for syn-
thesis of an attitude control system of a satellite with nonlinear dynamics. Linearized equa-
tions describe the satellite dynamics approximately, which is the main their disadvantage.
This article shows that basing on the angular momentum theorem, the nonlinear dynamical
equations of the satellite attitude control system can be represented in the form of linear
differential equations with variable coefficients, which makes it possible to use engineering
methods of stability analysis and analysis of transient quality in the process of synthesis of
the satellite attitude control system.
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1. Introduction

As a rule, the control law of the satellite attitude control system is based on the PD-regulator
(Moldabekov et al., 2015; Chaurais et al., 2013; Narkiewicz et al., 2020; Mehrjardi et al., 2014;
Ran et al., 2016; Nasrolahi and Abdollahi, 2016) and the dynamics of the satellite attitude control
system is described by nonlinear differential equations. The interest arises for the question of
whether it is possible to represent the dynamical equations of the satellite attitude control system
in the linear form. If it is possible, it enables engineers to use the rich arsenal of convenient
methods of dynamical analysis and synthesis of parameters for linear dynamic systems.
At present, linearized equations of the dynamics of the satellite attitude control system are

used to analyze the stability of motion and the synthesis of control systems from the condition
of ensuring the required quality of transient processes of satellite orientation (Moldabekov et al.
2017; Psiaki, 2001; Galvao et al. 2016; Doruk, 2009; Rossa et al., 2013; Nasrolahi and Abdol-
lahi, 2016, Ocampo, 2019). Expanding the functions on the right and left sides of the equations
of motion in a Taylor series and discarding high-order nonlinear terms is the main method of
linearizing the nonlinear equations of satellite motion, which is used by many authors (Doruk,
2009; Blanke and Larsen, 2010). Linearized equations describe the satellite dynamics approx-
imately, which is the main their disadvantage. The question about the global stability of the
original system of nonlinear equations under the condition of stability of the linearized system
arises in the process of the control system analysis and synthesis. The authors have a fairly large
arsenal of synthesis methods for linearized systems in the case of using linear control laws but
the question of the global stability of the original system of nonlinear equations remains open.
The work in solving this problem is carried out, in particular, Zhou (2015) obtained necessary
and sufficient conditions for the Lyapunov stability of the linearized system of equations, but
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not the global stability. Nasrolahi and Abdollahi (2016) presented the results of studying the
stability of a nonlinear system using the Lyapunov function method which provided the sufficient
conditions for stability.
It is known from the stability theory that the local stability of the original nonlinear system

follows from the stability of the linearized system and global stability does not follow from the
stability of the linearized system (Demidovich, 1967). It is also well known that the Lyapunov
function method provides sufficient conditions for the stability of a nonlinear system, but it
does not provide the necessary conditions for its stability. This article shows that basing on
the angular momentum theorem (Markeev, 1999; Knudsen and Hjorth, 1995), the nonlinear
dynamics equations of the satellite attitude control system can be represented in the linear
form. The article presents results of studying the linear form of equations, in particular, the
necessary and sufficient conditions of the global asymptotic stability of the linear system that
entail the global asymptotic stability of the original nonlinear system. This result is qualitatively
different from the result based on the linear approximation obtained by Zhou (2015), Nasrolahi
and Abdollahi (2016). In fact, it provides necessary and sufficient conditions for the global
stability of the original nonlinear system. Also, a method for synthesis of parameters of the
control law is proposed in this article. This method provides the required indicators of quality of
transient processes based on the use of a given distribution of roots of the characteristic equation
of a linear system and the scale of transition to normalized time for linear systems.

2. Mathematical model of the satellite attitude control system

Let us introduce the following coordinate systems and their notation:
• OXY Z is a stationary inertial coordinate system (ICS) with the origin in the center of
mass of the Earth (point O). Its OX axis lies in the equatorial plane, and it is directed to
the spring equinox. Its OZ axis coincides with the axis of Earth rotation, and it is directed
to the north pole of the Earth. OY axis complements the system to the right system;

• Cxyz is a body coordinate system (BCS) with the origin in the center of mass of the
satellite (point C). Its axes coincide with the main central axes of inertia of the satellite.

To describe the dynamics of rotational motion of the satellite, we apply the dynamic Euler
equations for the rotational motion of a rigid body with a fixed point (Markeev, 1999)

Jω̇ + ω × (Jω + Jrωr) = −Jrω̇r (2.1)

where J = {J1, J2, J3} is the diagonal (3 × 3) matrix of the inertia tensor of the satellite;
J1, J2, J3 are the main central moments of inertia of the satellite; ω = [ω1, ω2, ω3]

T is the vector
of the absolute angular velocity of the satellite in projections on the axis of the body coordinate
system Cxyz; Jr = {Jr1, Jr2, Jr3} is the diagonal (3 × 3) reaction wheel inertia tensor matrix;
Jr1, Jr2, Jr3 are the moments of inertia of the reaction wheels installed along the x, y, z axes,
respectively; ωr = [ωr1, ωr2, ωr3]

T is the vector of angular velocities of the reaction wheels.
Equation (2.1) characterizes the change of the vector of the angular velocity of the satellite

under the action of the vector of control moments of the reaction wheels. In the scalar form,
these equations are

J1ω̇1 + (J3 − J2)ω2ω3 + Jr3ωr3ω2 − Jr2ωr2ω3 =M1

J2ω̇2 + (J1 − J3)ω1ω3 + Jr1ωr1ω3 − Jr3ωr3ω1 =M2

J3ω̇3 + (J2 − J1)ω1ω2 + Jr2ωr2ω1 − Jr1ωr1ω2 =M3

(2.2)

where

Mi = −Jriω̇ri i = 1, 2, 3

are the control moments of the reaction wheels.
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We take the feedback control law in the form of a linear function

Mi = −hiωi − αiφi i = 1, 2, 3 (2.3)

where φ̇i = ωi, hi, αi are the unknown arbitrary parameters of the control law which must be
determined from the conditions of stability of motion and providing the required characteristics
of the transient process of orientation of the satellite.

3. Representation of the dynamical equations of the satellite attitude control

system in the linear form

Let us write the system of differential equations (2.2) in the normal Cauchy form

φ̇1 = ω1

ω̇1 = −
1

J1
[h1ω1 + α1φ1 + (J3ω3 + Jr3ωr3)ω2 − (J2ω2 + Jr2ωr2)ω3]

φ̇2 = ω2

ω̇2 = −
1

J2
[h2ω2 + α2φ2 − (J3ω3 + Jr3ωr3)ω1 + (J1ω1 + Jr1ωr1)ω3]

φ̇3 = ω3

ω̇3 = −
1

J3
[h3ω3 + α3φ3 + (J2ω2 + Jr2ωr2)ω1 − (J1ω1 + Jr1ωr1)ω2]

(3.1)

where ωi(t), ωri(t), i = 1, 2, 3 are continuously limited functions of time t due to limited power
of the reaction wheel engines. It is obvious that the system of nonlinear differential equations
(3.1) has a trivial solution.

The system of nonlinear differential equations (3.1) in the matrix form can be written as

Ẋ = AX+ f(X) (3.2)

where X = [x1, . . . , x6]
T ≡ [φ1, ω1, φ2, ω2, φ3, ω3]

T, f(X) = [f1(X), . . . , f6(X)], A = A6×6 –
quasi-diagonal matrix with constant elements

A =





















0 1 0 0 0 0

−α1
J1
−h1
J1

0 0 0 0

0 0 0 1 0 0

0 0 −α2
J2
−h2
J2

0 0

0 0 0 0 0 1

0 0 0 0 −α3
J3
−h3
J3





















f1(X) = 0 f2(X) =
1

J1
[−(J3ω3 + Jr3ωr3)ω2 + (J2ω2 + Jr2ωr2)ω3]

f3(X) = 0 f4(X) =
1

J2
[(J3ω3 + Jr3ωr3)ω1 − (J1ω1 + Jr1ωr1)ω3]

f5(X) = 0 f6(X) =
1

J3
[−(J2ω2 + Jr2ωr2)ω1 + (J1ω1 + Jr1ωr1)ω2]

Let us introduce linear functions of the angular velocities of the satellite and reaction wheels
expressing the angular moments along the three axes of rotation of the satellite

Jiωi + Jriωri = Ci i = 1, 2, 3 (3.3)
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According to the angular momentum theorem (Markeev, 1999) in the case when the external
forces and moments acting on the satellite are equal to zero, Ci < ∞ are constants in the
projections onto the fixed axes of the ICS determined by the initial conditions for the angular
velocities of the satellite and reaction wheels around the coordinate axes

Ci = Jiωi(0) + Jriωri(0) i = 1, 2, 3 (3.4)

However, in the projections on the axis of the BCS, Ci < ∞ will be functions of its angles
of rotation relative to the ICS. In this case, the values Ci < ∞ tend to constants when the
indicated rotation angles tend to zero.
It can be shown that if the trivial solution of the system of equations (3.1) is asymptotically

stable according to Lyapunov (Demidovich, 1967), i.e. the angles of rotation of the BCS relative
to the ICS tend to zero, then the angular moments along the three axes of rotation of the satellite
tend to their limit values

lim
t→∞
Ci[ωi(t), ωri(t)] = lim

t→∞
[Jiωi(t) + Jriωri(t)] = Jriω

0
ri = C

0
i i = 1, 2, 3 (3.5)

Then the angular moments along the three axes of rotation of the satellite can be represented
as continuous bounded functions of time t

Ci(t) = C
0
i +Bi(t) i = 1, 2, 3 t ∈ [0,∞) (3.6)

where

lim
t→∞
Bi(t) = 0 i = 1, 2, 3 (3.7)

Taking into account equalities (3.3) and (3.6), the functions f(X) in equations (3.2) can be
written as linear functions of angular velocities ωi, i = 1, 2, 3

f1(X, t) = 0 f2(X, t) = −
1

J1
(C3(t)ω2 − C2(t)ω3)

f3(X, t) = 0 f4(X, t) = −
1

J2
(C1(t)ω3 − C3(t)ω1)

f5(X, t) = 0 f6(X, t) = −
1

J3
(C2(t)ω1 − C1(t)ω2)

(3.8)

Accordingly, matrix Eq. (3.2) taking into account equalities (3.6) can be written in the form

Ẋ = [A+C0 +B(t)]X (3.9)

where A+C0 +B(t) is the matrix with constant and time-variable elements

A+C0 =























0 1 0 0 0 0

−α1
J1

−h1
J1

0 −
C0
3

J1
− B3(t)
J1

0
C0
2

J1
+ B2(t)
J1

0 0 0 1 0 0

0
C0
3

J2
+ B3(t)
J2

−α2
J2

−h2
J2

0 −
C0
1

J2
− B1(t)
J2

0 0 0 0 0 1

0 −
C0
2

J3
− B2(t)
J3

0
C0
1

J3
+ B1(t)
J3

−α3
J3

−h3
J3























Here the elements of the quasi-diagonal matrixA are determined by the parameters of control
law (2.3) and the elements of the constant matrix C0 are determined by the initial conditions
for the angular velocities of the satellite and reaction wheels around coordinate axes (3.4).
In the particular case when the initial conditions for the system of equations (3.2) and for

the angular velocities of the reaction wheels are zero, all the coefficients Ci < ∞ are equal to
zero according to expressions (3.3) and the linear homogeneous system of differential equations
(3.9) takes the form

Ẋ = [A+B(t)]X (3.10)
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4. Stability conditions of a nonlinear dynamical system

In the work of (Moldabekov et al., 2015; Nasrolahi and Abdollahi, 2016), the stability of the
satellite attitude control system with a control law in form (2.3) was studied. In (Moldabekov et
al., 2015), on the basis of the second Lyapunov method, sufficient conditions for the asymptotic
stability of the trivial solution of the system of nonlinear equations of dynamics (3.2) were
obtained, and the region of asymptotic stability in the parameter space of the control law was
found. Let us show that for the asymptotic stability of nonlinear system (3.2) it is necessary and
sufficient that a homogeneous linear system of differential equations with constant coefficients
is asymptotically stable

Ẋ = [A+C0]X (4.1)

Indeed, according to Theorem 2 ch. 2 p. 12 in the work of (Demidovich, 1967), if the system
with constant matrix (4.1) is asymptotically stable and conditions (3.7) are satisfied, then the
perturbed system with variable matrix (3.9) is also asymptotically stable. Hence, due to the
equivalence of the perturbed linear system of differential equations (3.9) and the nonlinear system
of equations (3.2), it follows that if the system with constant matrix (4.1) is asymptotically stable
and conditions (3.7) are satisfied, then nonlinear system (3.2) is also asymptotically stable.

Conversely, from expressions (3.5) and (3.6) it follows that for satisfying conditions (3.7), it
is necessary that the nonlinear system of differential equations (3.2) be asymptotically stable.

Thus, the following statement is proved: for asymptotical stability of the nonlinear system
of differential equations (3.2) it is necessary and sufficient that the system with constant matrix
(4.1) be asymptotically stable.

Corollary 1. If nonlinear system (3.2) is asymptotically stable, then it is globally asymptoti-
cally stable since, according to (Demidovich, 1967), if a linear system with constant matrix
(4.1) is asymptotically stable, then it is also globally asymptotically stable.

Corollary 2. The area of global asymptotic stability of nonlinear system (3.2) in the space of
parameters of control law (2.3) can be found by the conditions of asymptotic stability of
the linear system with constant coefficients (4.1).

However, the use of system (4.1) for engineering calculations when analyzing the stability is
not very convenient, since the constant elements C0i of the matrix of system (3.9) take different,
beforehand unknown values depending on the initial angular velocity of the satellite and reaction
wheels.

In this connection, a question arises whether it is possible to use the following truncated
homogeneous linear system of differential equations for the stability analysis and synthesis of
parameters according to the given quality of transients of the satellite attitude control system

Ẋ = AX (4.2)

in which the constant elements of matrix A are determined only by the parameters of control
law (2.3) and are independent of the initial conditions for the angular velocities of the satellite
and reaction wheels.

Let us show that with a certain choice of parameters of control law (2.3) based on the
asymptotic stability conditions and required transient quality parameters of the satellite attitude
control system, its asymptotic stability can be ensured under any initial conditions with respect
to the angular velocities of rotation of the satellite and reaction wheels, i.e. its global asymptotic
stability.



114 M. Moldabekov et al.

As is known from the work of (Ocampo, 2019; Blanke and Larsen, 2010; Zhou, 2015; Bese-
kersky and Popov, 1972) the stability of a satellite attitude control system described by a system
of linear differential equations with constant coefficients (4.1) is determined by location of the
roots of its characteristic equation

det[(A+C0)− λE] = 0 (4.3)

In the particular case when the initial angular velocities of the satellite and the reaction wheels
are zero, the stability of the satellite orientation system is determined by the location of the
roots of the characteristic equation of the truncated system of linear differential equations (4.2)

det(A− λE) = 0 (4.4)

With account of the fact that the matrix A of system (4.2) is quasi-diagonal, its characteristic
polynomial can be represented as

det(A− λE) =
3
∏

i=1

(

λ2 +
hi
Ji
λ+
αi
Ji

)

=
6
∑

i=0

aiλi (4.5)

where

a0 =
α1α2α3
J1J2J3

a1 =
α1α2h3
J1J2J3

+
h1α2α3
J1J2J3

+
α1h2α3
J1J2J3

a2 =
α1α2
J1J2

+
α1α3
J1J3

+
α2α3
J2J3

+
h1α2h3
J1J2J3

+
α1h2h3
J1J2J3

+
h1h2α3
J1J2J3

a3 =
h1
J1

(α2
J2
+
α3
J3

)

+
h2
J2

(α1
J1
+
α3
J3

)

+
h3
J3

(α1
J1
+
α2
J2

)

+
h1h2h3
J1J2J3

a4 =
h1h2
J1J2

+
h1h3
J1J3

+
h2h3
J2J3

+
α1
J1
+
α2
J2
+
α3
J3

a5 =
h1
J1
+
h2
J2
+
h3
J3

a6 = 1

The characteristic polynomial for the matrix A + C0 of the system of linear differential
equations (4.1) has the form

det[(A+C0)− λE] =
6
∑

i=0

biλ
i (4.6)

where

b0 = a0 b1 = a1 b2 = a2 +
1

J1J2J3
(C21α1 + C

2
2α2 + C

2
3α3)

b3 = a3 +
1

J1J2J3
(C21h1 +C

2
2h2 + C

2
3h3)

b4 = a4 +
C21
J2J3

+
C22
J1J3

+
C23
J1J3

b5 = a5 b6 = a6

In the general case, when the initial conditions with respect to the angular velocities of the
satellite and the reaction wheels are nonzero, the stability of the satellite attitude control system
is determined by the distribution of the roots of characteristic equation (4.3) of system (4.1). Four
of the seven coefficients of the equation coincide with the coefficients of characteristic equation
(4.4), these are b0, b1, b5, b6. The other three coefficients have additional terms depending on
the values of the angular moments C1, C2, C3, which satisfy the following conditions

−Cm ¬ Ci ¬ Cm i = 1, 2, 3 (4.7)
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where Cm = const > 0 are the largest possible values of the absolute values of expressions (3.3),
which in the case of zeroing the angular velocities of the reaction wheels before the satellite
maneuver are defined as

Cm = max
i
max
ωi
0

|Jiω
i
0| (4.8)

where ωi0 is the initial angular velocity of rotation of the satellite around the corresponding
coordinate axis.
Here arises the question of how the values C1, C2, C3 determined by nonzero initial conditions

for the angular velocity of the satellite and the rotation angles of the moving BCS relative to the
ICS affect the location of the roots of characteristic equation (4.3), i.e. on stability and transient
performance of the satellite attitude control system.
The exact answer to this question can be obtained by finding the roots of characteristic

equation (4.3) for possible values C1, C2, C3 in interval (4.7). However, its assessment using
only coefficients b0-b6 of the characteristic equation is more convenient for preliminary stability
analysis (Sokolov, 1972, Sokolov and Lipatov, 1970).
Dimensionless coefficients are introduced, which are called the stability indicators

ui =
bi−1bi+2
bibi+1

i = 1, . . . , 4 (4.9)

A number of theorems is proved (Sokolov and Lipatov, 1970) on the stability of linear systems,
from which it follows that the sufficient conditions for their stability are

ui < 0.465 (4.10)

Sufficient stability conditions (4.10) are satisfied for characteristic equation (4.4) with bino-
mial coefficients corresponding to the case C1 = C2 = C3 = 0

u1 = u4 = 0.22 u2 = u3 = 0.3 (4.11)

For the boundary case when C1, C2, C3 tend to infinity, it can be shown that the corre-
sponding boundary values of the stability indicators are equal to

u1 = u4 = 0.333 u2 = u3 = 0 (4.12)

Based on these boundary values of the stability indicators, we can assume that sufficient
stability conditions (4.10) are satisfied for all intermediate values C1, C2, C3 from zero to infinity.
The verification of validity of this assumption is shown below by numerical examples of the
location of the roots of characteristic equation (4.4) at various values of Ci, i = 1, 2, 3, from the
interval of their values from 0 to infinity.
Without loss of generality of the results, we can accept J1 = J2 = J3 = J , C1 = C2 = C3 = C,

h1 = h2 = h3 = h, α1 = α2 = α3 = α. Then, for the binomial coefficients of characteristic
equation (4.4), from expressions (4.5) we obtain α = J , h = 2J . In this case, the coefficients b
of equation (4.6) are transformed to the form

b0 = 1 b1 = 6 b2 = 15 + 3
(C

J

)2
b3 = 20 + 6

(C

J

)2

b4 = 15 + 3
(C

J

)2
b5 = 6 b6 = 1

Let us assume Cm = J . The calculation results for 8 values of the coefficients of characteristic
equation (4.3) with the increments 0.125Cm are shown in Table 1.
The results of calculation of the corresponding values of the stability indicators are shown

in Table 2.
The results of calculation of the corresponding values of the roots of characteristic equation

(4.5) are shown in Table 3.
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Table 1. Coefficients of characteristic equation (4.3) depending on C

C
b

b2 b3 b4

0.125Cm 15.05 20.09 15.05

0.25Cm 15.18 20.37 15.18

0.375Cm 15.42 20.84 15.42

0.5Cm 15.75 21.5 15.75

0.625Cm 16.17 22.34 16.17

0.75Cm 16.68 23.37 16.68

0.875Cm 17.29 24.59 17.29

Cm 18 26 18

Table 2. Dimensionless coefficients u depending on C

C
u

u1 u2 u3 u4

0.125Cm 0.2225 0.2987 0.2987 0.2225

0.25Cm 0.2236 0.2946 0.2946 0.2236

0.375Cm 0.2252 0.2879 0.2879 0.2252

0.5Cm 0.2275 0.2791 0.2791 0.2275

0.625Cm 0.2303 0.2686 0.2686 0.2303

0.75Cm 0.2335 0.2567 0.2567 0.2335

0.875Cm 0.2370 0.2440 0.2440 0.2370

Cm 0.2407 0.2308 0.2308 0.2407

Table 3. Roots of characteristic equation (4.5) depending on C

C
λ

λ1 λ2 λ3 λ4 λ5 λ6

0 −1 −1 −1 −1 −1 −1

0.125Cm −1.4396 −1.4396 −0.9288 −0.9288 −0.6316 −0.6316
+0.4549i −0.4549i +0.3705i −0.3705i +0.1996i −0.1996i

0.25Cm −1.4074 −1.4074 −1.2627 −0.7920 −0.5653 −0.5653
+0.7134i −0.7134i +0.2865i −0.2865i

0.375Cm −1.5251 −1.5251 −1 −1 −0.4749 −0.4749
+0.9411i −0.9411i +0.2930i −0.2930i

0.5Cm −1.5910 −1.5910 −1 −1 −0.4090 −0.4090i
+1.1657i −1.1657i +0.2997i −0.2997i

0.625Cm −1.6434 −1.6434 −1 −1 −0.3566 −0.3566
+1.3814i −1.3814i +0.2997i −0.2997i

0.75Cm −1.6836 −1.6836 −1.0802 −0.9258 −0.3135 −0.3135
+1.5927i −1.5927i +0.2965i −0.2965i

0.875Cm −1.7209 −1.7209 −1.0683 −0.9361 −0.2769 −0.2769
+1.8035i −1.8035i +0.2902i −0.2902i

Cm −1.7541 −1.7541 −1 −1 −0.2459 −0.2459

+2.0144i −2.0144i +0.2823i −0.2823i
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5. Method of synthesis of control law parameters

It is important that the matrix A of truncated system (4.2) be quasi-diagonal, because it allows
one to consider rotation of the satellite around three coordinate axes independently of each other.
This possibility of decomposition of the dynamical problem greatly simplifies the problems of
stability analysis and synthesis of parameters of the satellite attitude control system, since these
problems for a 6-th order linear differential system are reduced to the corresponding problems
for three independent 2nd order linear differential systems.
Decomposability of characteristic polynomial (4.5) of truncated system (4.2) into three simi-

lar factors means that satellite rotations around the three coordinate axes are not only indepen-
dent, but also described by identical systems of two first-order differential equations. To ensure
the monotony of the transient process in rotational motion of the satellite around the coordinate
axes and, at the same time, to achieve the maximum speed, we set the roots of characteristic
equation (4.4) real and multiple, i.e. to rotate the satellite around each of the three coordinate
axes

λ2 + 2Ω0λ+Ω
2
0 = 0 (5.1)

where Ω0 = tn/tr is the scale of the transition from the normalized transient time tn to real
transient time tr (Besekersky and Popov, 1972).
The normalized time of the transient process will be determined by constructing it at λi = −1

(i = 1, . . . , 6), i.e. equation (5.1) should have the form

λ2 + 2λ+ 1 = 0 (5.2)

Accordingly, the coefficients of characteristic equation (4.4) for the normalized time of the
transient process will be binomial and equal to

a0 = 1 a1 = 6 a2 = 15 a3 = 20

a4 = 15 a5 = 6 a6 = 1

For a real given time of the transient process tp, the coefficients of characteristic equation (4.4)
should be equal to

a0 = 1 a1 = 6Ω0 a2 = 15Ω
2
0 a3 = 20Ω

3
0

a4 = 15Ω
4
0 a5 = 6Ω

5
0 a6 = Ω

6
0

Hence, using the known expressions for the coefficients of characteristic equation (4.5), it is
possible to determine the unknown parameters of the control law by solving algebraic equations
for the values of the latter.

6. Numerical studies

For numerical simulation of transient processes on the basis of solving nonlinear equations (3.2),
taking into account synthesis of the control law parameters according to the method in Sec-
tion 5, we assume that the satellite moments of inertia are equal to J1 = J2 = 0.1521 kgm

2,
J3 = 0.0375 kgm

2 (Chaurais et al., 2013), the initial values of the angular position are
φ1(t0) = φ2(t0) = φ3(t0) = 45

◦, the initial angular velocities of the satellite and reaction wheels
are equal to zero, the transient time is set equal to the transient time 20 s in Chaurais et al.
(2013), where the parameters of the PD controller are determined empirically. In this article,
the parameters of the control law are determined according to the method in Section 5 and,
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Fig. 1. Transient processes of the satellite attitude control system

with a transient time of 20 s, are equal to h1 = h2 = 0.09126, h3 = 0.0225, α1 = α2 = 0.013689,
α3 = 0.003375. The results of numerical simulation are shown in Fig. 1.

In comparison with the simulation results given in the work of Chaurais et al. (2013), the
transient processes are monotonic without oscillation, the final time of the transient process is
practically the same for all three angles, which indicates high efficiency of the proposed method
for synthesizing the control law parameters.

7. Conclusions

• It is shown that the nonlinear differential equations of the dynamics of the satellite attitude
control system can be represented in a linear form, namely, in the form of linear differential
equations with variable coefficients basing on the angular momentum theorem.

• Based on the study of the linear form of the original nonlinear system, necessary and
sufficient conditions for its global asymptotic stability are obtained. It is proved that
the region of global asymptotic stability of the original nonlinear system in the space of
parameters of the control law can be found from the conditions of asymptotic stability of
the linear dynamic system with constant coefficients.

• It is shown that for the analysis of stability and synthesis of parameters according to
the given quality of transients of the satellite attitude control system, a truncated linear
system of differential equations can be used. The constant elements of the matrix of this
truncated linear system are determined only by the parameters of the control law, and these
elements are independent of the initial conditions with respect to the angular velocities of
the satellite and reaction wheels.
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• It is shown that with a certain choice of control law parameters, proceeding from the
stability conditions and the achievement of the required parameters of the transient process
of the satellite attitude control system, its stability is ensured under any initial conditions
with respect to the angular velocities of the satellite rotation, i.e. the global asymptotic
stability is ensured.

• It is shown that the problem of stability analysis and synthesis of parameters of the satellite
attitude control system described by a system of 6-th order linear differential equations
can be reduced to corresponding problems for three independent systems of 2-nd order
linear differential equations, which greatly simplifies solution of these problems.

• A method for synthesizing the parameters of the control law is proposed, which provides
the required quality indicators of transient processes of satellite orientation by choosing a
given distribution of the roots of the characteristic equation of the linear system and the
scale of transition to the normalized time for linear systems.

The research in this article was carried out under financing of the program 008 “Applied
scientific research in the field of space activities and information security”.
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